
Curriculum Learning & Selective Reliance in Knowledge Distillation for
Language Models

Hasan Khan
New York University
hk3550@nyu.edu

Abstract

Knowledge distillation (KD) is a powerful,
well-established model compression technique
that can face performance limitations when the
capacity difference between student and teacher
models is severely mismatched (Cho and Hari-
haran, 2019), or when multiple teachers cause
competing distillation objectives (Du et al.,
2020). To address these issues and improve per-
formance in KD for large language modeling, I
explore the implementation of two ideas: using
curriculum learning during KD, where training
data is sorted based on difficulty, and using Se-
lective Reliance during KD, where a student
language model selectively leverages teacher
distillation loss for data samples deemed diffi-
cult by the curriculum.

1 Introduction

Knowledge Distillation (Hinton et al., 2015) is a
model compression technique commonly deployed
in settings where large models are difficult to
store and run. Vanilla KD comprises of a dual
model student-teacher modeling framework, where
a small capacity student model aims to mimic the
performance of a larger capacity teacher model by
learning the distribution of the output labels gen-
erated from the teacher model trained on the same
dataset. Specifically, the student model uses a bi-
partite loss function Lstudent that incorporates both
Lkd (the KD loss measured by the KL divergence
between the softmax of the student output logits
PS and the softmax of the teacher output logits PT ,
scaled by the temperature parameter τ ) and Lce

(the standard cross entropy training loss using the
true labels ytrue). The parameter λ controls the
weight given to each component loss. The student
loss and its component losses are defined below:

Lce = CE(ytrue, PS)

Lkd = τ2KL(PT , PS)

Lstudent = (1− λ)Lce + λLkd

The general framework is visualized in Figure 1.

However, KD has been shown to provide minimal
to no performance gains for certain tasks, such
as image recognition on ImageNet (Zagoruyko
and Komodakis, 2016). Cho and Hariharan note
that empirical results establishing the generality
of KD efficacy for various tasks are nonexistent
(Cho and Hariharan, 2019). They examine the
reasons behind these failures, noting that large
differences in student teacher model capacities
may limit the student model’s ability to minimize
both training loss and KD loss, forcing the student
to minimize the KD loss over the train loss. In
addition to capacity gaps between student and
teachers, KD frameworks that involve distillation
from an ensemble of teachers require n-paritite
loss functions, in which conflict can exists between
different teacher models, which can adversely
effect distillation loss (Du et al., 2020).

From these findings, I propose selective reliance,
a KD technique for dynamically changing the
student’s reliance on KD loss, in order to improve
model accuracy. Selective reliance is implemented
by updating λ in LStudent at the sample level,
where λ is determined by the difficulty of the
sample. Difficulty is defined in the context of
Curriculum Learning (CL), a training strategy for
improving model convergence speed and accuracy
that involves training on easily learnable samples
before more difficult ones (Bengio et al., 2009).

Difficulty rankings for samples can be determined
using the confidence scores generated by either the
teacher model (teacher-generated curriculum) or
the student model (student-generated curriculum).
In the former, the teacher model would also act
as the difficulty scoring function (Hacohen and
Weinshall, 2019) for each datapoint in the the



Figure 1: Knowledge Distillation: General Framework

student’s curriculum, calculated before the student
training process. In the latter, the student model
would generate its own curriculum during student
training by looking at confidence scores generated
during previous epochs in training, as described by
snapshot learning (Zhao et al., 2021). For this ex-
periment, I use the confidence scores generated by
the student model (student-generated curriculum)
during training. I hypothesize that relying on the
teacher model is only in the student’s best interest
when the sample being evaluated is "difficult" as
determined by the curriculum, and that accuracy
yielded from vanilla knowledge distillation (KD)
and knowledge distillation with curriculum
learning (KD-CL) can be improved upon with
selective reliance (KD-CL-SR) techniques built
into the distillation framework.

2 Related Works

2.1 Efficacy of Knowledge Distillation

Cho and Hariharan test the notion of generality
in Knowledge Distillation, which states that stu-
dents of any size or architecture can learn from
teachers of any size or architecture (Cho and Hari-
haran, 2019).They experiment with various student
and teacher network architectures on CIFAR and
ImageNet datasets, and conclude that while larger
teacher models have increased accuracy, student
models trained on larger teachers may become less
accurate due to large capacity gaps between student
and teacher models. Larger models do not make
inherently better teachers, and matching student
and teacher capacities must be taken into consider-
ation for proper knowledge distillation. In explor-
ing ways around this capacity gap, they find that
early stopping of teacher model training can help
mitigate the effect of mismatched capacities.

2.2 Curriculum Learning for Deep Networks
Haconen and Weinshall analyze the effect of cur-
riculum learning on deep vision network training
by examining the challenges of sorting datapoint
difficulties and computing mini-batches such that
they exhibited increasing levels of difficulty (Haco-
hen and Weinshall, 2019). They sort the difficulty
of training examples by using confidence scores
for each training image, computed using two meth-
ods. The transfer scoring function method consists
of using the confidence scores from an external
classifier trained on feature vectors from the penul-
timate layer activations of a pre-trained ImageNet
inception network to assign the difficulty of the
data. The second method consists of training the
deep network with the help of uniformly sampled
mini-batches, then defining a scoring function by
computing the confidence score for each image,
also called the self-taught scoring function. They
found that both methods, combined with pacing
functions meant for mini-batch computation, had
similar performance.

2.3 Knowledge Distillation Via Instance Level
Sequence Learning

Zhao et al. propose a knowledge distillation frame-
work in the image classification setting where the
student constructs curriculums throughout training
by utilizing "snapshots" of itself at early training
checkpoints to rank image difficulty (Zhao et al.,
2021). These difficulty scores then allow for on
the fly curriculum generation during KD, yield-
ing slightly improved accuracies and faster conver-
gence time for the student model.

3 Method

The overall approach of this work is to deter-
mine whether KD, and specifically KD-CL and
KD-CL-SR, can improve the accuracy of a small
model on the biomedical question answering task,



Figure 2: Experimental Setup: Training regime for three experiments, with steps progressing sequentially from
left to right. The top figure depicts the training regime for vanilla KD, where a student is further pre-trained on
PubMed abstracts under supervision by the BioBert teacher, and then fine tuned on BioASQ data for evaluation.
The bottom figure depicts the training regime for KD-CL and KD-CL-SR. A curriculum is first generated on the
PubMed abstracts by passing them through the student model at inference, yielding PubMed-CL. Then, the student
is further pre-trained on that ordered curriculum, and finally fine tuned on BioASQ data for evaluation as before.
Selective reliance is applied during the continued pre-training for KD-CL-SR.

BioASQ. As a benchmark for comparison, two
baseline models are fine tuned on the BioASQ
task; a dmoain naive, unguided DistillBert, which
achieves a fairly low accuracy (and serves as the
base architecture for student models in remaining
experiments), and the domain adapted BioBert
model, which achieves a relatively high accuracy
(and serves as the base architecture for teacher
models in remaining experiments). I hypothesise
that the scores of these baseline models will serve
as loose lower and upper bounds for the three
knowledge distillation experiments (KD, KD-CL,
and KD-CL-SR), which should fall between
these bounds; where KD is expected to improve
upon the unguided DistillBert, KD-CL over KD,
KD-CL-SR over KD-CL, and that all student
models will remain less accurate than BioBert, the
designated expert.

All experiments were run on Google Collab GPUs.
See Appendix A for data details, B for task specific
settings, C for evaluation metrics, and D for experi-
ment hyperparameter configurations. All source
code for experiments can found in this Github
repository.

3.1 Knowledge Distillation Framework
To test the effects of curriculum learning and selec-
tive reliance on knowledge distillation in language
models, I conduct additional pre-training (Gururan-
gan et al., 2020) on the small DistillBert student,
with distillation supervision by the larger BioBert
teacher model, using specialized biomedical data
from PubMed abstracts (Lee et al., 2019). Standard
masked language modeling (MLM) is the task cho-
sen for additional pretraining. Depending on the
experiment, the PubMed abstract corpus may be

https://github.com/theotherkhan/KD-CL-SR-LLM.git


ordered into a curriculum (KD-CL, KD-CL-SR),
and selective reliance may be applied (KD-CL-
SR). Once further pretrained, the student model
is fine tuned and evaluated on the BioASQ ques-
tion answering task selected from BLURB (Gu
et al., 2021), a broad LM benchmark for general
Biomedical language understanding, and compared
to scores attained by the naive student and domain
adapted teacher models. This KD setup adapts
and builds on recent work implementing KD for
biomedical models (Rohanian et al., 2022). The
decision to conduct KD at the pre-training stage,
rather than at the fine tuning stage, follows from
research and applied work done showing higher
efficacy of knowledge distillation during the pre-
training phase w/ subsequent fine tuning, rather
than conducting KD on just the fine tuning phase.
(?). See Figure 2 for a visual of the KD-CL frame-
work.

3.2 Student Curriculum Generation

As a preliminary step to running any curriculum
learning experiments, a curriculum for the student
models must be generated. To do this, the PubMed
abstracts are fed through the student model, and
inverse confidence scores are derived for each text
sample by calculating the MLM loss via model in-
ference for each abstract. Once these scores have
been assigned to each abstract, abstract texts are
sorted by increasing inverse confidence (increas-
ing loss) into an easy-to-hard curriculum, with the
hardest samples having performed the worst during
MLM inference. See Figure 2 for a visual of the
generated curriculum, PubMed-CL.

3.3 Student Training & Experiments

I conduct three training experiments on the Dis-
tillBert student models, with the student with no
teacher (plain DistillBert) model serving as the stu-
dent baseline. The remaining three experiments
test the effects of using curriculum ordered training
and selective reliance implementations, listed as
follows: student w/ knowledge distillation (Student-
KD), student w/ knowledge distillation using a
student-generated curriculum (Student-KD-CL),
student w/ selectively reliant knowledge distillation
using a student-generated curriculum (Student-KD-
CL-SR). See Figure 2 above for a chart depicting
the experiments using curriculums and selective
reliance.

3.4 Implementing Selective Reliance
Since the curriculum is - by definition - ordered on
difficulty, selective reliance was to be implemented
by scaling up λ from 0 through the duration of
an epoch. One lambda value would be selected
per batch. Values would be based on the average
confidence score of the batch Cb, normalized by the
maximum global confidence score Cg and shifted
by a small scaling factor s (to set the initial λ to 0).
I define lambda in the context of selective reliance
as follows:

λ =
(1− Cb)

max(Cg)
− s

4 Results

BLURB Model Scores Test Acc
BioBert (large model) 84.14 %
PubMedBert (large model) 87.56%
DistillBert (small model) 74.44%
Baseline Model Scores Test Acc
BioBert (large model) 68.12%
PubMedBert (large model) 60.04%
DistillBert (small model) 54.02%

Table 1: BLURB scores for the BioASQ task as re-
ported by (Gu et al., 2021) (top). My baseline scores for
the same BioASQ task (bottom).

The table above shows the baseline scores on the
BioASQ task for various BERT models. These
scores do not correspond exactly 1 with scores
achieved in (Gu et al., 2021), but maintain the same
general pattern of accuracy, with the smaller Bert
model achieving the lowest accuracy, followed by
the larger domain adapted models. Using the above
results as a baseline, the experimental results from
the knowledge distillation setting can be evaluated
(see Table 2).

From Table 2, it is observed that applying
Knowledge Distillation improves accuracy over
the baseline score by roughly three percentage
points. Using curriculum learning further improves
over the KD experiment score, though the increase
in accuracy is quite negligible. It is perhaps tenable
that Curriculum Learning does not actively harm
accuracy for this particular task. Regarding selec-
tive reliance, I was unable to run the experiments

1Most likely due to training environment differences; addi-
tionally, I was unable to find hyperparameter details for when
these models were fine tuned on the BioASQ task



Figure 3: Sample Curriculum generated on a representative subset of 175K abstracts. Observe that a majority of
abstracts are equally difficult by this metric, with two small populations of samples being deemed really easy (dip
near ID 0, ≤2.5 loss) and really hard (spike near ID 175000, ≥ 5.0). The small plateau toward the tail of this graph
is an artifact of NAN replacement strategy for "dirty" abstracts of inappropriate length or nonsensical text.

Experiment Model Scores Test Acc
DistillBert-KD 57.03%
DistillBert-KD-CL 58.57%
DistillBert-KD-CL-SR –

Table 2: Experiment Scores on the BioASQ Question
Answering task. Here, the BioBert model is used as
the teacher in Knowledge Distillation for convenience
purposes, adapting previous open source code published
by (Rohanian et al., 2022).

in due time, and leave them for future exploration.

5 Discussion

Ultimately, the limited set of results partially
confirm my hypothesis that KD during MLM
pretraining will improve the accuracy of a naive
student model on a domain specific task, and
that curriculum learning can be used to improve
accuracy during KD. Still, the results are not that
significant, especially for CL. There could be many
reasons why KD did not significantly improve
performance. Teacher and student models in this
particular experiment may have too large of a size
gap, one of the most fundamental problems in
knowledge distillation. A proper hyperparameter

sweep over various temperature and lambda values
was not conducted, which would be necessary for
a more rigorous analysis.

For more rigorous work to integrate CL into the
KD framework, different types of curriculum
generation methods could be tested. Instead
of the student generating the curriculum prior
to continual pretraining, a third (peer) model
could be used to curate the curriculum, or the
student could generate the curriculum during
training using the snapshotting technique (Zhao
et al., 2021). Reverse curriculums would also be
helpful to generate and evaluate as sanity checks.
Properties such as overall text length, sentence
length, diction and word frequency could also be
used as heuristics for linguistic complexity and
aid in curriculum curation. A curriculum pacing
function could be used throughout the training
process (Hacohen and Weinshall, 2019).

MLM loss as a proxy for difficulty could be
criticised. Depending on which words are masked,
an example text may arbitrarily achieve a higher or
lower loss, independent of the overall complexity
of the passage - other metrics to determine
confidence could be explored. Lastly, It must be



noted that there is also mixed evidence in support
for the efficacy of curriculum learning in the
context of language modeling, though this is a
contested topic. (Campos, 2021).

Distant future work could include analysis on multi-
teacher settings, and looking at other evaluation
metrics like model convergence or model size.

6 Conclusion

In conclusion, KD improves model accuracy over
baseline models, and curriculum learning seems to
only marginally improve model accuracy in the con-
text of knowledge distillation for large language
models. Selective reliance can still be explored,
though it may first be wise to conduct a more rig-
orous analysis of curriculum learning in the KD
for LM setting before moving forward with more
niche techniques.
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A Appendix A: Data

A.1 BioASQ for Question Answering

The BioASQ (Tsatsaronis et al., 2015) is an
annually updated expert annotated corpus com-
prised of various biomedical domain question
answering tasks. The task selected for this
experiment is 7b, which is a binary yes/no QA task.
BioASQ is specifically chosen from amongst the
BLURB tasks because it shows one of the widest
performance gaps between small models trained
on this task compared to larger expert models (Gu
et al., 2021).

For all experiments, a 1500/100/166 train / valida-
tion / test split was used after undersampling the
full dataset to account for class balance.

A.2 Pubmed Abstracts for Continued
Pretraining

To conduct continual pretraining, a selection 1.81M
abstracts from PubMed were downloaded from

ywchoi/pubmed-abstract-1 off HuggingFace. Natu-
rally, this took a very long time to run.

B Appendix B: Loss Functions &
Evaluation Metrics

B.1 MLM Loss

MLM loss is used both for continual pretraining,
and as a way to generate confidence values for each
span of text.

B.2 Accuracy

In keeping with its usage in the BLURB BioASQ
task, accuracy is also used as the evaluation metric
of choice for the BioASQ fine-tuning task. Care
is taken to balance for class labels for accuracy to
remain a useful metric.

C Appendix C: Experiment Parameters
& Model Specifications

Optimal hyperparameters were found using
randomized grid search sweeps using the Weights
& Biases library. Included are hyperparameters for
continued pretraining on PubMed abstracts and
continued fine tuning on BioASQ.

Knowledge Distillation Hyperparameters for
continued pre-training:

Model Hyperparameters
DistillBert-KD temperature=2.0,

lambda = 0.5
DistillBert-KD-CL temperature=2.0,

lambda = 0.5
DistillBert-KD-CL-SR –

Hyperparameters for fine-tuning on BioASQ:

Model Hyperparameters
BioBert batch-size = 8

epochs = 2
lr = 4.727e-06
weight-decay = 0.1

DistillBert batch-size = 8
epochs = 2
lr = 5.537e-05
weight-decay = 0.05

DistillBert-KD-CL batch-size = 8
epochs = 2
lr = 9.001e-05
weight-decay = 0.1

DistillBert-KD-CL-SR –



Model Specifications:

Model Specifications
DistillBert vocab-size = 28996

parameters = 65M
Bio-Bert vocab-size = 28996

parameters = 108M
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